
CAN GAMMA-RAY BURSTS BE USED TO MEASURE COSMOLOGY? A FURTHER ANALYSIS

D. Xu,
1
Z. G. Dai,

1
and E. W. Liang

1,2,3

Received 2004 October 29; accepted 2005 July 16

ABSTRACT

Three different methods of measuring cosmology with gamma-ray bursts (GRBs) have been proposed since a
relation between the gamma-ray energyE� of a GRB jet and the peak energyEp of the �F� spectrum in the burst frame
was reported by Ghirlanda and coauthors. In method I, to calculate the probability for a favored cosmology, only the
contribution of the E�-Ep relation that is already best-fitted for this cosmology is considered. We apply this method to
a sample of 17 GRBs and obtain the mass density �M ¼ 0:15þ0:45

�0:13 (1 �) for a flat �CDM universe. In method II, to
calculate the probability for some certain cosmology, contributions of all the possible E�-Ep relations that are best-
fitted for their corresponding cosmologies are taken into account. With this method, we find a constraint on the mass
density 0:14 < �M < 0:69 (1 �) for a flat universe. In method III, to obtain the probability for some cosmology,
contributions of all the possible E�-Ep relations associated with their unequal weights are considered. With this
method, we obtain an inspiring constraint on the mass density 0:16 < �M < 0:45 (1 �) for a flat universe and �2

dof ¼
19:08/15 ¼ 1:27 for the concordance model of �M ¼ 0:27. Compared with the previous two methods, method III
makes the observed 17 GRBs place much more stringent confidence intervals at the same confidence levels. Further-
more, we perform a Monte Carlo simulation and use a larger sample to investigate the cosmographic capabilities of
GRBs with different methods. We find that a larger GRB sample could be used to effectively measure cosmology, no
matter whether the E�-Ep relation is calibrated by low-z bursts or not. Ongoing observations of GRBs in the Swift era
are expected to make the cosmological utility of GRBs progress from its babyhood into childhood.

Subject headinggs: cosmology: observations — distance scale — gamma rays: bursts

1. INTRODUCTION

The traditional cosmology has been revolutionized by mod-
ern sophisticated observation techniques in distant Type Ia su-
pernovae (SNe Ia; e.g., Riess et al. 1998; Schmidt et al. 1998;
Perlmutter et al. 1999), cosmic microwave background (CMB)
fluctuations (e.g., Bennett et al. 2003; Spergel et al. 2003), and
large-scale structure (LSS; e.g., Allen et al. 2003; Tegmark et al.
2004). Each type of cosmological data tends to play a unique role
in measuring cosmology. In modern cosmology, it has been con-
vincingly suggested that the global mass-energy budget of the
universe, and thus its dynamics, is dominated by a dark energy
component and that the currently accelerating universe had once
been decelerating (e.g., Riess et al. 2004). The cosmography and
the nature of dark energy, as well as its evolution with redshift,
are some of the most important issues in physics and astronomy
today.

Gamma-ray bursts (GRBs) are the most intense explosions
observed so far. They are believed to be detectable up to a very
high redshift (Lamb&Reichart 2000;Ciardi&Loeb2000;Bromm
& Loeb 2002; Gou et al. 2004), and their high-energy photons
are almost immune to dust extinction. These advantages would
make GRBs an attractive cosmic probe.

From the isotropic equivalent peak luminosity Liso-variability
(or spectral lag) relation (Fenimore & Ramirez-Ruiz 2000; Norris
et al. 2000), the standard energy reservoir E� of GRB jets (Frail
et al. 2001), the Liso–peak energy Ep of the �F� spectrum in the
burst frame relation (Lloyd-Ronning & Petrosian 2002; Lloyd-
Ronning & Ramirez-Ruiz 2002; Yonetoku et al. 2004), and the

isotropic equivalent energy Eiso-Ep relation (Amati et al. 2002),
to the beaming-corrected energyE�-Ep relation (hereafterGhirlanda
relation; Ghirlanda et al. 2004a), GRBs are becoming more and
more standardized candles. However, these relations in GRBs
have not been calibrated by a low-zGRB sample, so one should
look for a method that is different from the ‘‘classical Hubble
diagram’’ method for SNe Ia.

The luminosity relations with the variability and spectral lag
make GRBs a distance indicator in the same sense as Cepheids
and SNe Ia, in which an observed light-curve property can yield
an apparent distance modulus (DM). Schaefer (2003, hereafter
S03) considered these two relations for nine bursts with known
redshifts and advocated a new cosmographic method (hereafter
method I) for GRBs. In method I, one first calibrates the two
relations with the observed sample for a certain cosmology and
then applies the best-fit relations back to the observed sample to
obtain a �2 or a probability P / exp (��2/2) for this cosmol-
ogy. Similar to the brightness of SNe Ia, the energy reservoirs in
GRB jets are also clustered, but they are not fine enough for
precise cosmology (Bloom et al. 2003). Amati et al. (2002) found
a Eiso / Ek

p (k � 2) relation from 12 BeppoSAX bursts. The High
Energy Transient Explorer 2 (HETE-2) observations confirm this
relation and extend it to X-ray flashes (Sakamoto et al. 2004;
Lamb et al. 2004). In addition, it also holds within a GRB (Liang
et al. 2004). The Ghirlanda relation is written as (E� /10

50 ergs) ¼
C(Ep /100 keV)a, where a and C are dimensionless parameters.
Theoretical explanations of this relation include the standard syn-
chrotron mechanism in relativistic shocks (Zhang & Mészáros
2002; Dai & Lu 2002), together with the afterglow jet model, or
the emission from off-axis relativistic jets (Yamazaki et al. 2004;
Eichler & Levinson 2004; Levinson & Eichler 2005). This rela-
tion could also be understood as due to Comptonization of the
thermal radiation flux that is advected from the base of an outflow
in the dissipative photosphere model (e.g., Rees & Mészáros
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2005). If these explanations are true, the Ghirlanda relation ap-
pears to be intrinsic. Thus, Dai et al. (2004, hereafter DLX04)
considered the Ghirlanda relation for 12 bursts and proposed
another cosmographic method (hereafter method II) for GRBs.
In method II, one makes marginalizations over the unknown pa-
rameters in the Ghirlanda relation to obtain a �2 or a probability
P / exp (��2/2) for a certain cosmology. Following Schaefer’s
method,Ghirlanda et al. (2004b, hereafterGGLF04) and Friedman
& Bloom (2005, hereafter FB05) also investigated the same issue
but used different GRB data. Recently, Firmani et al. (2005, here-
after FGGA05) considered theGhirlanda relation for 15 bursts and
proposed a Bayesian approach for their cosmological use (here-
after method III). In method III, to obtain the probability for a
certain cosmology, one considers contributions of all the pos-
sible E�-Ep relations associated with their unequal weights. The
detailed procedures of the three methods are shown in x 2.1, and
they indicate that method III is the optimal one.

As analyzed previously, due to the lack of low-zGRBs, meth-
ods I, II, and III are different from the classical Hubble diagram
method for SNe Ia. In this paper, we investigate the constraints
on cosmological parameters from the observed 17GRBs with dif-
ferent methods. Because the present GRB sample is a small one,
it is necessary to use a large simulated sample, which may be es-
tablished in the Swift era, to discuss the cosmographic capabilities
with different methods.

This paper is arranged as follows. In x 2, we describe our an-
alytical methods and data. The results from the observed GRB
sample are presented in x 3. In x 4, we performMonte Carlo sim-
ulations and analyze the results from the simulated GRB sample.
Conclusions and discussion are presented in x 5.

2. METHOD AND SAMPLE ANALYSIS

2.1. Method Analysis

According to the relativistic fireball model, the emission from
a spherically expanding shell and that from a jet are similar to
each other if the observer is along the jet’s axis and the Lorentz
factor of the fireball is larger than the inverse of the jet’s half-
opening angle �, but when the Lorentz factor drops below ��1,
the jet’s afterglow light curve is expected to present a break be-
cause of the edge effect and the laterally spreading effect (Rhoads
1999; Sari et al. 1999). Therefore, together with the assumptions
of the initial fireball emitting a constant fraction �� of its kinetic
energy into prompt gamma rays and a constant circumburst par-
ticle density n, the jet’s half-opening angle is derived to be

� ¼ 0:163
tj;d

1þ z

� �3=8
n0

Eiso;52

��
1� ��

� �1=8
; ð1Þ

where Eiso;52 ¼ Eiso/10
52 ergs, tj;d ¼ tj/1 day, and n0 ¼ n/1 cm�3.

The ‘‘bolometric’’ isotropic equivalent gamma-ray energy of a
GRB is given by

Eiso ¼
4�d2LS�k

1þ z
; ð2Þ

where S� is the fluence (in units of ergs cm�2) received in an
observed bandpass and the quantity k is a multiplicative correc-
tion of order unity relating the observed bandpass to a standard
rest-frame bandpass (1–104 keV in this paper; Bloom et al. 2001).
The energy release of a GRB jet is thus given by

E� ¼ 1� cos �ð ÞEiso; ð3Þ

where the fractional uncertainty (FB05) is

�E�
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where

C� ¼
� sin �

8� 8 cos �

� �2
: ð5Þ

The Ghirlanda relation is

E�

1050 ergs
¼ C

Ep

100 keV

� �a
; ð6Þ

where a and C are assumed to have no covariance and Ep ¼
Eobs
p (1þ z). Combining equations (1)–(3) and (6), we derive the

apparent luminosity distance with the small-angle approxima-
tion (i.e., �T1)4 as

dL ¼ 7:575
1þ zð ÞC2=3½Eobs

p 1þ zð Þ=100 keV�2a=3

kS�tj;d
� �1=2

n0��
� �1=6 Mpc: ð7Þ

Assuming that all the observables are independent of each other
and their errors satisfy Gaussian distributions, we derive the frac-
tional uncertainty of the apparent luminosity distance without
the small-angle approximation,

�dL
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For simplicity, we consider �� ¼ 0:2 and ��� ¼ 0 throughout
this paper (Frail et al. 2001). The apparent DM of a burst can
be given by

�obs ¼ 5 log dL þ 25; ð9Þ

with the uncertainty of

��obs
¼ 5

ln 10

�dL

dL
: ð10Þ

4 This approximation is valid because (1� cos �� �2/2)/(1� cos � )
�� �� < 1%

when � < 0:35 rad and <0.4% when � < 0:22 rad.
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On the other hand, the theoretical luminosity distance in �
models (Carroll et al. 1992) is given by

dL ¼ c 1þ zð ÞH�1
0 �kj j�1=2

sinn

(
�kj j1=2

;

Z z

0

dz 1þ zð Þ2 1þ �Mzð Þ � z 2þ zð Þ��

h i�1=2
)
; ð11Þ

where �k ¼ 1� �M � �� and ‘‘sinn’’ is sinh for �k > 0 and sin
for �k < 0. For �k ¼ 0, equation (11) degenerates to c(1þ z)H�1

0

times the integral.
Usually, the likelihood for the parameters �M and �� can be

determined from a �2 statistic, where

�2 �M ;��; a;Cjhð Þ

¼
X
k

�th zk ;�M ;��jhð Þ��obs zk ;�M ;��; a;Cjhð Þ
��obs zk ;�M ;��;a;C;�a=a;�C=Cð Þ

	 
2
; ð12Þ

where the dimensionless Hubble constant h � H0/100 km s�1

Mpc�1 is taken as 0.71. If the Ghirlanda relation could be cali-
brated by low-z bursts, the above �2 statistic becomes the same
as that in SNe Ia, that is,

�2 �M ;��; hð Þ ¼
X
k

�th zk ;�M ;��; hð Þ � �obs; k

��obs; k

" #2
; ð13Þ

where h should be marginalized.
The procedures of methods I, II, and III are as follows.
Method I (see S03; GGLF04; FB05).—The procedure of this

method is to (1) fix �i � (�M ;��)i, (2) calculate �th and E� for
each burst for that cosmology, (3) best fit the E�-Ep relation to
yield (a, C )i and (�a/a, �C/C )i , (4) substitute (a, C )i and (�a/a,
�C/C )i into equations (7) and (8) and thus derive �obs and ��obs

for each burst for cosmology �i , (5) calculate �
2 for cosmology

�i by comparing �th with �obs and ��obs
and then convert it to the

probability by P(�i) / exp ��2(�i)/2½ � (Riess et al. 1998), and
(6) repeat steps 1–5 from i ¼ 1 to N to obtain the probability for
each cosmology. Therefore, method I is formulized by

P �ið Þ ¼ P �ij�ið Þ; i ¼ 1;N : ð14Þ

Method II (see DLX04).—The procedure of this method is to
(1) fix �i, (2) calculate �th and E� for each burst for that cos-
mology, (3) best fit the E�-Ep relation to yield (a, C )i and (�a/a,
�C/C )i , (4) substitute (a, C)i and (�a/a, �C/C )i into equations (7)
and (8) and thus derive �obs and ��obs

for each burst for cos-
mology �i , (5) repeat steps 1–4 from i ¼ 1 to N to obtain �th ,
�obs , and ��obs

for each burst for each cosmology, (6) refix �j ,
(7) calculate �2(�jj�i) by comparing �th(�j) with �obs(�i ) and
��obs

(�i) and then convert it to a conditional probability by
P (�jj�i) / exp ��2(�jj�i) /2

� �
, (8) repeat step 7 from i ¼ 1

to N to obtain the probability for cosmology �j by P (�j) /P
iexp ��2(�jj�i) /2

� �
, and (9) repeat steps 6–8 from j ¼ 1 to

N to obtain the probability for each cosmology. Method II is
described by

P �j

� �
¼
XN
i¼1

P �jj�i

� �
; j ¼ 1;N : ð15Þ

Method III (see FGGA05).—Method III is an improvement of
method II. Its key idea is to consider unequal weights for different
E�-Ep relations, i.e., unequalweights for different conditional prob-
abilities P(�jj�i). Therefore, the first seven steps of this method
are the same as those of method II. The follow-up procedure is
to (8) repeat step 7 from i ¼ 1 toN to obtain an iterative probabil-
ity for cosmology�j by P

ite(�j) /
P

iexp ��2(�jj�i)/2
� �

Pini(�i)
[here the initial probabilityP ini(�) for each cosmology is regarded
as equal; e.g., Pini(�) � 1], (9) repeat steps 6–8 from j ¼ 1 to
N to obtain an iterative probability Pite(�) for each cosmology,
(10) replace Pini(�) in step 8 with Pite(�) in step 9, then repeat
steps 8–9, and thus reach another set of iterative probabilities
for each cosmology, and (11) run the above cycle again and again
until the probability for each cosmology converges, i.e.,Pite(�) j
P Bn(�) after tens of cycles.

In this method, to calculate the probability Pfin(�j) for a fa-
vored cosmology, we consider contributions of all the possible
E�-Ep relations associated with their weights. The conditional
probability P(�jj�i) denotes the contribution of some certain
relation, and Pfin(�i) weights the likelihood of this relation for
its corresponding cosmology. Therefore, the Bayesian approach
can be formulized by

PBn �j

� �
¼
XN
i¼1

P �jj�i

� �
PBn �ið Þ; j ¼ 1;N : ð16Þ

However, FGGA05 took different calculations for the condi-
tional probability P(�jj�i). Making use of the incomplete gamma
function, they transformed �2(�jj�i) into its corresponding con-
ditional probabilityP(�jj�i). Actually, once the parameters (a,C)i
and (�a/a, �C/C )i of the Ghirlanda relation are calibrated for
cosmology�i , they become ‘‘known’’ for the cosmic model�j .
So herein the meaning of �2(�jj�i) is the same as that for SNe Ia.
In this paper, we redefine the conditional probability P(�jj�i) by
the formula P(�jj�i) / exp ��2(�jj�i)/2

� �
.

2.2. Sample Analysis

The great diversity in GRB phenomena suggests that the GRB
population may consist of substantially different subclasses (e.g.,
MacFadyen &Woosley 1999; Bloom et al. 2003; Sazonov et al.
2004; Soderberg et al. 2004). TomakeGRBs a standard candle, a
homogenous GRB sample is required. The most prominent ob-
servational evidence for a GRB jet is its temporal break in their
afterglow light curves. For some bursts, e.g., GRB 030329, their
temporal breaks are observed in both optical and radio bands.
Berger et al. (2003) argued that these two breaks are caused by
the narrow component and the wide component of the jet in this
burst, respectively, indicating that the physical origins of the
breaks in the optical band and in the radio band are different. In
addition, the radio afterglow light curves fluctuate significantly.
For example, in the case of GRB 970508, the light curve of its
radio afterglow does not clearly present a break. Only a lower
limit of tj > 25 days was proposed by Frail et al. (2000). Fur-
thermore, the light curve of its optical afterglow is proportional
to t�1.1, in which case no break appears (Galama et al. 1998).
We thus include in our analysis only those bursts whose tem-
poral breaks in their optical afterglow light curves were well mea-
sured. We obtain a sample of 17 GRBs, excluding GRB 970508.
They are listed in Table 1.

We correct the observed fluence in a given bandpass to a
‘‘bolometric’’ bandpass of 1–104 keV with spectral parameters.
The fluence and spectral parameters for a burst fitted by different
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authors may be affected by different criteria (or systematic biases)
in their works. We thus collect a couple of fluence and spectral
parameters from the same original literature. For GRB 970828,
GRB 980703, GRB 991216, and GRB 011211, the fluence and
spectral parameters are unavailable in the same original litera-
ture, so we choose their fluences measured in the widest energy
band available in the other literature.

For GRB011211,we approximately take the high-energy spec-
tral index 	 to be �2.3 because it is unreported in Amati (2003).
The spectra of HETE-2–detected GRB 020124, GRB 020813,
GRB 021004, GRB 030226, and XRF 030429 are not fitted by
the Band function but by the cutoff power-law model (Band
et al. 1993). However, it is appropriate that their corresponding
‘‘bolometric’’ fluences are calculated by the former model with
	 � �2:3, avoiding the potential systematic bias that is brought
by applying different spectral models for one observed sample
(Barraud et al. 2003).

The circumburst densities of several bursts in our sample
have been obtained from broadband modeling of the afterglow
emission (e.g., Panaitescu & Kumar 2002). For the bursts with
unknown n, we assumed n ’ 3 cm�3 as the median value of
the distribution of the measured densities, together with a con-
stant fractional uncertainty of 80% (Ghirlanda et al. 2004a;
DLX04).

3. COSMOLOGICAL CONSTRAINTS

We first fit the E�-Ep relation for the cosmology of �M ¼
0:27, �� ¼ 0:73, and h ¼ 0:71 and obtain a ¼ 1:53, C ¼ 0:97,

�a /a ¼ 0:05, and�C/C ¼ 0:08, togetherwith�2
� ¼ 21:93/15:0 ¼

1:46, using equation (4) for the estimation of �E�
/E� (Press et al.

1999, p. 660). Substituting the best-fit results into equations (7)
and (8), we plot the Hubble diagram for the observed GRB
sample in the concordance model of�M ¼ 0:27, which is shown
in Figure 1 ( filled circles). Shown for comparison are theHubble
diagrams for the binned gold sample of SNe Ia (open circles;

TABLE 1

Sample of 17 GRBs

GRB z

Eobs
p (�obs

Ep
)a

( keV) [
, 	 ]a
S�(�S� )

b

(10�6 ergs cm�2)

Bandpassb

(keV)

tj(�tj )
c

(days)

n (�n)
d

(cm�3) ��
e Referencesf Detected by

GRB 970828..... 0.9578 297.7 [59.5] �0.70, �2.07 96.0 [9.6] 20–2000 2.2 (0.4) 3.0 [2.4] 0.2 1, 2, 2, 3, 1, none BATSE

GRB 980703..... 0.966 254.0 [50.8] �1.31, �2.40 22.6 [2.26] 20–2000 3.4 (0.5) 28.0 (10.0) 0.2 4, 2, 2, 3, 5, 5 BATSE

GRB 990123..... 1.600 780.8 (61.9) �0.89, �2.45 300.0 (40.0) 40–700 2.04 (0.46) 3.0 [2.4] 0.2 6, 7, 7, 7, 6, none BeppoSAX

GRB 990510..... 1.619 161.5 (16.0) �1.23, �2.70 19.0 (2.0) 40–700 1.57 (0.03) 0.29 (0.14) 0.2 8, 7, 7, 7, 9, 10 BeppoSAX

GRB 990705..... 0.8424 188.8 (15.2) �1.05, �2.20 75.0 (8.0) 40–700 1.0 (0.2) 3.0 [2.4] 0.2 11, 7, 7, 7, 12, none BeppoSAX

GRB 990712..... 0.4331 65.0 (10.5) �1.88, �2.48 6.5 (0.3) 40–700 1.6 (0.2) 3.0 [2.4] 0.2 8, 7, 7, 7, 13, none BeppoSAX

GRB 991216..... 1.020 317.3 [63.4] �1.23, �2.18 194.0 [19.4] 20–2000 1.2 (0.4) 4.7 (2.8) 0.2 14, 2, 2, 3, 15, 10 BATSE

GRB 011211 ..... 2.140 59.2 (7.6) �0.84, �2.30 5.0 [0.5] 40–700 1.56 (0.02) 3.0 [2.4] 0.2 16, 17, 17, 3, 18, none BeppoSAX

GRB 020124..... 3.200 120.0 (22.6) �1.10, �2.30 6.8 [0.68] 30–400 3.0 (0.4) 3.0 [2.4] 0.2 19, 20, 20, 20, 21, none HETE-2

GRB 020405..... 0.690 192.5 (53.8) 0.00, �1.87 74.0 (0.7) 15–2000 1.67 (0.52) 3.0 [2.4] 0.2 22, 22, 22, 22, 22, none BeppoSAX

GRB 020813..... 1.255 212.0 (42.0) �1.05, �2.30 102.0 [10.2] 30–400 0.43 (0.06) 3.0 [2.4] 0.2 23, 20, 20, 20, 23, none HETE-2

GRB 021004..... 2.332 79.8 (30.0) �1.01, �2.30 2.55 (0.60) 2–400 4.74 (0.14) 30.0 (27.0) 0.2 24, 25, 25, 25, 26, 27 HETE-2

GRB 021211 ..... 1.006 46.8 (5.5) �0.805, �2.37 2.17 (0.15) 30–400 1.4 (0.5) 3.0 [2.4] 0.2 28, 29, 29, 29, 30, none HETE-2

GRB 030226..... 1.986 97.1 (20.0) �0.89, �2.30 5.61 (0.65) 2–400 1.04 (0.12) 3.0 [2.4] 0.2 31, 25, 25, 25, 32, none HETE-2

GRB 030328..... 1.520 126.3 (13.5) �1.14, �2.09 36.95 (1.40) 2–400 0.8 (0.1) 3.0 [2.4] 0.2 33, 25, 25, 25, 34, none HETE-2

GRB 030329..... 0.1685 67.9 (2.2) �1.26, �2.28 110.0 (10.0) 30–400 0.48 (0.03) 1.0 (0.11) 0.2 35, 36, 36, 36, 37, 38 HETE-2

XRF 030429 ..... 2.658 35.0 (9.0) �1.12, �2.30 0.854 (0.14) 2–400 1.77 (1.0) 3.0 [2.4] 0.2 39, 25, 25, 25, 39, none HETE-2

a The spectral parameters fitted by the Band function. The fractional uncertainties of Eobs
p are taken as 20% when not reported, and the fractional uncertainty of

the k-correction is fixed at 5%.
b The fluences and their errors in the observed energy band. The fractional errors are taken as 10% when not reported. The fluence and spectral parameters of a

GRB are selected from the same original literature if possible. If this criterion is unsatisfied, fluences are chosen in the widest energy band.
c Afterglow break times and errors in the optical band.
d The circumburst densities and errors from broadband modeling of the afterglow light curves. If not available, the value of n is taken as 3:0 � 2:4 cm�3.
e The constant efficiency �� of converting explosion energy into gamma-ray emission for each burst.
f References are in the following order: z, Eobs

p , [
, 	], S� , tj, n.
References.— (1) Djorgovski et al. 2001; (2) Jimenez et al. 2001; (3) Bloom et al. 2003; (4) Djorgovski et al. 1998; (5) Frail et al. 2003; (6) Kulkarni et al. 1999;

(7) Amati et al. 2002; (8) Vreeswijk et al. 2001; (9) Stanek et al. 1999; (10) Panaitescu & Kumar 2002; (11) Le Floc’h et al. 2002; (12) Masetti et al. 2000; (13) Björnsson
et al. 2001; (14) Piro et al. 2000; (15) Halpern et al. 2000; (16) Holland et al. 2002; (17) Amati 2003; (18) Jakobsson et al. 2003; (19) Hjorth et al. 2003; (20) Barraud et al.
2003; (21) Berger et al. 2002; (22) Price et al. 2003a; (23) Barth et al. 2003; (24) Matheson et al. 2003; (25) Sakamoto et al. 2005; (26) Holland et al. 2003; (27) Schaefer
et al. 2003; (28) Vreeswijk et al. 2003; (29) Crew et al. 2003; (30) Holland et al. 2004; (31) Greiner et al. 2003a; (32) Klose et al. 2004; (33) Rol et al. 2003; (34) Andersen
et al. 2003; (35) Greiner et al. 2003b; (36) Vanderspek et al. 2004; (37) Price et al. 2003b; (38) Tiengo et al. 2003; (39) Jakobsson et al. 2004.

Fig. 1.—Hubble diagrams for the observed GRB sample ( filled circles) and
for the binned gold sample of SNe Ia (open circles). The GRB E�-Ep relation has
been calibrated in the cosmic model of �M ¼ 0:27, �� ¼ 0:73, and h ¼ 0:71
(solid line).
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Riess et al. 2004) and the theoretical model of �M ¼ 0:27 and
�� ¼ 0:73 (solid line).

The constraints with method I are shown in Figure 2 (solid
contours). In the concordance model of �M ¼ 0:27, we find
�2

dof ¼ 17:91/15 ¼ 1:19. We measure�M ¼ 0:15þ0:45
�0:13 (1 �) for

a flat�CDM universe. DLX04 proposed method II based on the
principle that if there are unknown cosmology-independent pa-
rameters in the�2 statistic, they are usuallymarginalized over (i.e.,
integrating the parameters according to their probability distri-
bution). Note that DLX04 let the parameter a of the Ghirlanda
relation intrinsically equal 1.50. For the purpose of universality,
in this paper we let it vary freely, similar to the parameter C of
this relation (see details in x 2.1). The constraints with method II
are shown in Figure 3 (solid contours). This method provides a
more stringent constraint of 0:14 < �M < 0:69 (1 �) for a flat
universe.

By method I, we recalibrate the Ghirlanda relation for each
cosmology, i.e., �M and �� taken from 0 to 1. We find that the
half-opening angles of all the bursts are less than 0.23 rad and that
the mean �a /a and �C/C are 0.049 and 0.083, respectively. As a
result, the typical error terms in equation (8) are �S� /2S� � 0:052,
�k /2k � 0:025, ½C1/2

� /(2� 2C1/2
�
)�(3�tj /tj) � 0:091, ½C 1/2

� /(2 �
2C1/2

� )�(�n0 /n0)�0:118, ½1/(2� 2C1/2
� )�(�C/C ) � 0:055, a½1/(2 �

2C1/2
� )�(�E

obs
p /E

obs
p ) � 0:168, and �a½1/(2� 2C1/2

� )�jln ½E obs
p

(1 þ
z)100�j � 0:056. These error terms give a typical uncertainty of
apparent DM of ��obs

� 0:5 mag, which is a factor of �2 larger
than that derived from the SN Ia gold sample.

FGGA05 proposed the Bayesian approach to use GRBs as
cosmic rulers. In our work, we redefined the conditional proba-
bility in their method, called ‘‘method III’’ in this paper. The con-
straints on cosmological parameters with this method are shown
in Figure 4 (solid contours). Compared with the previous two
methods, method III does give much more stringent confidence
intervals at the same confidence levels (CLs). The results are in-

spiring and demonstrate the advantages of high-z distance indi-
cators in constraining cosmological parameters. The data set is
consistent with the concordance model of �M ¼ 0:27, yielding
�2
dof ¼ 19:08/15 ¼ 1:27. We also find 0:16 < �M < 0:45 (1 �)

for a flat universe.

Fig. 2.—Joint confidence intervals (68.3%, 90%, and 99%) in the �M -��

plane from the 17 GRBs with method I.
Fig. 3.—Same as Fig. 2, but with method II.

Fig. 4.—Same as Fig. 2, but with method III.
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4. SIMULATIONS AND COSMOLOGICAL CONSTRAINTS

4.1. Procedure of Simulations

As discussed above, the method for GRB cosmology is dif-
ferent from that for SN cosmology due to the lack of the low-z
calibration. The low-z calibration will greatly enhance the cos-
mographic capability of GRBs (assuming no cosmic evolution
for the Ghirlanda relation). Therefore, one can ask, could a large
high-zGRB sample effectively measure cosmology? To answer
this question, we carry out a Monte Carlo simulation and use a
large simulated sample to investigate the cosmographic capabil-
ities in different scenarios.

Our simulations are based on the Ghirlanda relation, which
is calibrated for �M ¼ 0:27 and �� ¼ 0:73. Making use of the
sample in Table 1, we find a ¼ 1:53, C ¼ 0:97, � < 0:2 rad, and
log (E� /1 erg) 2 ½49:82; 51:96�. We also find log (E obs

p /1 keV) 2
½1:54; 2:89�. These restrictive conditions are imposed on our sim-
ulations. Each simulated GRB is characterized by a set of S 0

b, t
0
j ,

n0, z, and E 0
p, where S

0
b is the bolometric fluence.

The simulation procedure is as follows:

1. We consider the lognormal distributions for the observables
Sb , tj , and n. From the 17GRBs, we find hlog Sb/1 erg cm�2ð Þi �
�4:46 with �logðSb=1 erg cm�2Þ � 0:78 and h logðtj/1 dayÞi� 0:17
with �logðtj=1 dayÞ � 0:27. Because n is unavailable in the liter-
ature for most GRBs, we take h log n /1 cm�3ð Þi� 0:40 with
�logðn=1 cm�3Þ � 0:25. The observable z is selected according to
its observational distribution cut by an upper limit z � 4:5, which
is shown in Figure 5. The uncertainty of z is ignored.

2. We also consider the lognormal distributions for the frac-
tional uncertainties of the observables Sb , tj , n, and Ep. From the
observed sample, we find log �Sb /Sbð Þh i� �0:97 with � logð�Sb=SbÞ �
0:16, hlog (�tj /tj)i��0:91 with � log (�tj

=tj) � 0:45, log �n /nð Þh i�
�0:30 with �logð�n=nÞ � 0:10, and h log (�Ep

/Ep)i � �0:83 with
�logð�Ep =EpÞ � 0:26, respectively. We ensure in code that the frac-
tional uncertainties of the observables Sb , tj , n, and Ep are less
than 25%, 35%, 100%, and 35%, respectively.

3. We simulate a GRB characterized by a set of (Sb � �Sb ,
tj � �tj , n � �n, z) according to the distributions that these param-
eters follow, compute its E� in the cosmic model of �M ¼ 0:27
and �� ¼ 0:73, and then calculate its Ep by the Ghirlanda re-
lation of (E� /10

50 ergs) ¼ 0:97(Ep /100 keV)1:53.
4. The GRB generated in step (3) follows the ‘‘rigid’’ Ghirlanda

relation. We add a random deviation to each parameter, except for

z, to make this burst more realistic, i.e., S 0
b ¼ Sb þ 1:1(�1)m�Sb ,

t
0
j ¼ tj þ 1:1(�1)m�tj , n0 ¼ n þ 1:1(�1)m�n , and E 0

p ¼ Ep þ
1:1(�1)m�Ep

, where m is randomly taken from 0 and 1.
5. Using the parameters S 0

b, t
0
j , n

0, z, and E 0
p, we compute

the parameters �0 and E 0
� for �M ¼ 0:27, �� ¼ 0:73 and the

quantity E 0obs
p ¼ E 0

p /(1þ z).
6. Since � < 0:2 rad and log (E� /1 erg) 2 ½49:82; 51:96� and

log (Eobs
p /1 keV) 2 ½1:54; 2:89� are valid for the observed sam-

ple, we require that �0, log (E 0
� /1 erg), and log (E 0obs

p /1 keV) of a
simulated GRB must be within the corresponding ranges.
7. Repeat steps (3)–(6) to generate a sample of 80 bursts.

The half-opening angles of the simulated sample are less than
0.23 rad when �M and �� are taken from 0 to 1, as in the ob-
served sample. We carry out a circular operation to achieve the
simulated sample, which may be established in the Swift era.

4.2. Constraints from Simulated GRBs

By method I, we find that the typical �a /a and �C/C for the
large sample decrease to 0.02 and 0.05. This is because for the
small observed sample, the dispersion of the Ghirlanda relation
is mainly contributed by a few ‘‘outliers,’’ while for the large
simulated sample, the bursts are distributed around the ‘‘rigid’’
Ghirlanda relation with a Gaussian distribution (see x 4.1). Such
a large sample seems to be more realistic.
Among several scenarios, we only perform to what degree the

simulated sample can constrain the �M -�� parameters with
method III. The results are shown by solid confidence intervals
in Figure 6. Also shown are the constraints derived from the SN
gold sample (dashed contours) at the same CLs. The main points
revealed by this figure are as follows: (1) A large high-z GRB
sample could effectivelymeasure cosmology. The simulatedGRB
data are consistent with the concordance model of �M � 0:3,

Fig. 5.—Histogram for the redshifts of 80 simulated GRBs, following the
redshift distribution of the GRBs observed so far.

Fig. 6.—Joint confidence intervals (68.3%, 95.4%, and 99.7%) in the�M -��

plane from the 80 simulated GRBs in this work (solid contours) and from the
157 SNe Ia in Riess et al. (2004; dashed contours). The filled circle marks�M ¼
0:30 and �� ¼ 0:70.
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yielding �2
dof ¼ 94:/78: � 1:20. With the prior of a flat universe,

the mass density is�M ¼ 0:30þ0:09
�0:06 at the 68.3% level. (2) GRBs

can better constrain �M than �� due to their high redshifts. The
orientation of the elliptical contours is almost vertical to the �M

axis. This is an advantage of GRBs over SNe Ia for cosmological
use. (3) GRBs supply complementary content to SN cosmology.
The 157 SNe Ia provide evidence of cosmic acceleration at a very
high CL. A large GRB sample would reach a similar conclusion.
Alone the SN sample nearly rules out the flat universe model at
1 � level, but a combination of GRBs and SNe makes the concor-
dance model of �M � 0:3 more favored and thus in more agree-
ment with the conclusion fromWilkinsonMicrowave Anisotropy
Probe (WMAP) observations (Spergel et al. 2003).

If the low-z calibration is realized for GRBs, then the solid
confidence regions in Figure 6 will become smaller so that they
lie in the part of cosmic acceleration at a high CL in the �M -��

plane (not shown in this work). We here present a rough estima-
tion of the detection rate of low-z bursts in the Swift era. Taking
�M ¼ 0:27,�� ¼ 0:73, and h ¼ 0:71, the observed rate of bursts
with redshift less than z is

dN

dt
¼
Z z

0

dz
dV zð Þ
dz

RGRB zð Þ
1þ z

; ð17Þ

where RGRB(z) is the comoving GRB rate density and dV (z) /dz
is the isotropic comoving volume element,

dV

dz
¼ 4�

Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M 1þ z0ð Þ3þ ��

q
2
64

3
75
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M 1þ zð Þ3þ ��

q :

ð18Þ

We assume RGRB(z) / RSN(z) / RSF(z), where RSN(z) and RSF(z)
are the comoving rate densities of core-collapse supernovae and
star formation, respectively (Porciani & Madau 2001). We also
assume a constant fraction k ¼ RGRB /RSN � 10�5, which con-
siders the GRB formation efficiency out of the core-collapse SNe
and the GRB beaming effect. In addition, we take RSN(z) ’
0:01RSF(z) M

�1
� . The global star formation rate for the Einstein–

de Sitter universe (Steidel et al. 1999) is

RSF zð Þ ¼ 0:16
exp 3:4zð Þ

exp 3:4zð Þ þ 22
M� yr�1 Mpc�3: ð19Þ

Thus, we derive the detection probability of low-z GRBs in the
Swift era (2–4 yr): when z � 0:1, there will be<1 burst, andwhen
z � 0:2, there will be a few bursts. These results agree with the
present observational GRB data. In addition, taking into account
possible different origins of very low-z bursts (e.g., GRB 980425)
and high-z bursts, it might not be valid to directly apply the low-z
calibrated relation to a high-z sample. However, if the cosmic
evolution of the ‘‘standard candle’’ relation is ignored, then in the
future one could consider a sample of GRBs with redshift z �
0:2 for the low-z calibration. As the zero-order approximation,
the theoretical luminosity distance of such a GRB sample can be
written as dL(z) ¼ z(c /H0).

5. CONCLUSIONS AND DISCUSSION

At present, GRBs with known redshifts are about 45 out
of a few thousands, among which 17 are available to derive the
Ghirlanda relation. This relation is so tight that it has been con-
sidered for cosmological use. Although the low-z calibration of

theGhirlanda relation is not realized, the observed 17 high-z bursts
still provide interesting and even inspiring results. We find that
GRBs independently place a constraint on themass density 0:16 <
�M < 0:45 (1 �) for a flat �CDM model.

GRBs are becoming more and more standardized candles.
Through the Ghirlanda relation, the mean scatter in GRBs is a
factor of �2 larger than that in SNe Ia. However, the disadvan-
tage of larger scatter in GRBs is compensated, to some extent, by
their advantages of high redshifts and immunity to the dust ex-
tinction. The shape of the constraints in Figure 6 implies thatGRBs
could not onlymeasure themass density�M but also provide com-
plementarity to SN cosmology. The Swift satellite will hopefully
establish a large GRB sample with known redshifts, perhaps in-
cluding low-z bursts. In this sense, GRB cosmology now lies in
its babyhood.

A reliable theoretical basis of the Ghirlanda relation is also im-
portant for GRBs as a cosmic ruler. Using the small-angle approx-
imation for all bursts, a scaling analysis gives E� / Ea

p (a � 1:5)
as long as the parameters such as the spectral index p of the dis-
tribution of accelerated electrons, the energy equipartition factor �e
of the electrons, the energy equipartition factor �B of the magnetic
field, the bulkLorentz factor�, etc., or their combinations are clus-
tered (Zhang &Mészáros 2002; Dai & Lu 2002; Wu et al. 2004).
This power-law relation could also be understood by the emis-
sions from off-axis relativistic jets (Yamazaki et al. 2004; Eichler
& Levinson 2004; Levinson & Eichler 2005) and the dissipative
photosphere model (Rees & Mészáros 2005). Different plausible
explanations imply that this topic needs further investigations.

It should be pointed out that the Ghirlanda relation is obtained
under the framework of the uniform top-hat jet model. Other in-
put assumptions include the uniform circumburst medium density
n and the constant efficiency �� of converting the initial ejecta’s
kinetic energy into gamma-ray energy release. However, n and
�� should be different from burst to burst, and n is variable for a
burst in the wind environment (Dai & Lu 1998; Chevalier & Li
1999). Thus, the quantity n�� in the Ghirlanda relation might not
be clustered for the observed bursts (FB05). New relations with
as few well-observed quantities as possible are required for im-
provement.5 In this paper, for those bursts with unknown n, we
assumed n ’ 3 cm�3 as the median value of the distribution of
the measured densities, together with a constant fractional uncer-
tainty of 80% (Ghirlanda et al. 2004a; DLX04). We also treat
�� ¼ 0:2 and ��� ¼ 0 for all the 17 bursts.

Finally, the Ghirlanda relation is not valid for all of the ob-
served BATSE (Burst and Transient Source Experiment) sample.
This implies that this relation may suffer from the data selec-
tion effect (Band & Preece 2005). Its validity will be tested by the
ongoing observations of the Swift mission. However, no matter
whether the low-z sample is established or not, GRB cosmology
is expected to progress much in the coming years.
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theNationalNatural ScienceFoundationof China (grants 10233010,
10221001, and 10463001), the Ministry of Science and Technol-
ogy of China (NKBRSF G19990754), the National Postdoctoral
Foundation of China, and the Research Foundation of Guangxi
University.

5 After the submission of this paper, Liang & Zhang (2005) and Xu (2005)
proposed new relations between the isotropic gamma-ray energy and the �F�

peak energy by considering the break time of an afterglow light curve. Clearly,
these three quantities are directly observed.
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